
International Conference on New Interfaces for Musical Expression

TSL Synthesis Synthesizer:
Recon�gurable Signal
Flows through Program
Synthesis
Michel Vazirani, Wonhyuk Choi, Mark Santolucito

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://creativecommons.org/licenses/by/4.0/


International Conference on New Interfaces for Musical Expression
TSL Synthesis Synthesizer: Recon�gurable Signal Flows through Program

Synthesis

2

TSL Synthesis Synthesizer: Reconfigurable Signal Flows through 
Program Synthesis
Michel Vazirani (Columbia University), Wonhyuk Choi (Columbia University), 

Mark Santolucito (Barnard College, Columbia University)

1. PubPub Link

https://nime.pubpub.org/pub/aa27fggy/draft?access=wn9qmyy9

2.Conference Abstraction

We introduce the TSL Synthesis Synthesizer, an online keyboard synthesizer that uses 

program synthesis to offer dynamic control over its own sound parameters. Program 

synthesis is a field of computer science aimed at automatically generating code that 

satisfies a given behavioral specification. The TSL Synthesis Synthesizer presents a 

novel approach at harnessing the expressivity of Temporal Stream Logic (TSL)[1] to 

create such specifications in order to dictate how sound parameters should be altered 

over time.

Fundamentally, the web page is a keyboard synthesizer. The keyboard can be played 

via one of three methods. Users can either click the keys on the webpage with their 

mouse, use their computer keyboard, or connect a USB MIDI keyboard. At a high level, 

the tool functions by first prompting the user to create a TSL specification describing 

how the sound parameters should be altered during performance depending on what 

note the user is playing on the synthesizer. Once a specification is defined, program 

synthesis is used to generate JavaScript code that manages the dynamic changes in the 

sound parameters. Then, this JavaScript code is embedded into the webpage, allowing 

users to play the keyboard and rely on the web page to automatically alter the sound 

parameters according to the specification.

From a technical perspective, the key contribution of this work is the use of program 

synthesis to automatically generate code based on users’ specifications. Temporal 

Stream Logic is a logic for describing reactive systems - systems that infinitely 

consume input and produce output over time. In our case, our reactive system 

consumes user input (i.e. MIDI input) and produces output as signal flow rerouting 

(e.g. toggling an LFO). TSL formulae operate on an abstract notion of “time,” which 

moves forward with each reactive input; in our example, each new MIDI signal moves 

time a step forward. TSL includes temporal operators such as “next” [◯], “always” [□ 



International Conference on New Interfaces for Musical Expression
TSL Synthesis Synthesizer: Recon�gurable Signal Flows through Program

Synthesis

3

], “eventually” [⋄], “until” [U], “weak until” [W], “release” [R], and “as soon as”[A]. It 

also includes boolean logic operators such as “and”[∧], “or” [∨], “implies”[→], and “if 

and only if” [↔].

Using TSL, we can define the desired signal flow for composition shown in the video in 

Sec. 3:

(□ play note67 ↔ (◯[am ← toggle am])) ∧ 

(□ play note64 ↔ (◯[lfo ← toggle lfo]))

We can also create more complex control formulae, such as the following:

□ play note60 → ◯(□[am ← toggle am]) W play note67

Although our current web demo demonstrates the expressivity of TSL, it is limited in 

its practical applications. We intend to explore possibilities to determine the most 

applicable musical environments for TSL control, as well as options for using the TSL 

synthesis to control third-party audio tools (e.g. VST plugins).

3.MEDIA

Synthesizer: https://tslsynthesissynthesizer.com/ 

Visit the web version of this article to view interactive content.

—

Citations

TSL Synthesis Synthesizer Demo

1. Finkbeiner, B., Klein, F., Piskac, R., & Santolucito, M. (2019). Temporal stream 

logic: Synthesis beyond the bools. In International Conference on Computer Aided 

Verification (pp. 609–629). ↩

https://tslsynthesissynthesizer.com/

