
Program Synthesis for Musicians: A Usability
Testbed for Temporal Logic Specifications

Wonhyuk Choi1, Michel Vazirani1, and Mark Santolucito2

1 Columbia University, New York, NY 10027, USA
2 Barnard College, Columbia University, New York, NY 10027, USA
{wonhyuk.choi, mvv2114}@columbia.edu, msantolu@barnard.edu

Abstract. In recent years, program synthesis research has made sig-
nificant progress in creating user-friendly tools for Programming by ex-
ample (PBE) and Programming by demonstration (PBD) environments.
However, program synthesis from logical specifications, such as reactive
synthesis, still faces large challenges in widespread adoption. In order
to bring reactive synthesis to a wider audience, more research is neces-
sary to explore different interface options. We present The SynthSyn-
thesizer, a music-based tool for designing and testing specification inter-
faces. The tool enables researchers to prototype different interfaces for
reactive synthesis and run user studies on them. The tool is accessible to
both researchers and users by running on a browser on top of a docker-
containerized synthesis toolchain. We show sample implementations with
the tool by creating dropdown interfaces, and by running a user study
with 21 users.

Keywords: Reactive Synthesis · Program Synthesis · Computer Music

1 Introduction

Over the last two decades, program synthesis has seen much progress [15] and
researchers have made significant headway into making program synthesis acces-
sible to a wider audience [13]. Specifically, research in Programming by example
(PBE) and Programming by demonstration (PBD) has led to a wide array of
user-friendly tools [8,22,23,31], including Wrangler [21], StriSynth [14], Sketch-
n-Sketch [16].

However, building user-friendly tools for program synthesis from logical spec-
ifications remains a challenge. In particular, for reactive synthesis [4], despite
development in both theory [3, 33] and tooling [19], the complexity of writing
specifications has limited the adoption of reactive synthesis to a highly technical
audience. In order to bring synthesis to non-technical users, more research is
necessary to understand effective means of creating logical specifications.

In this paper, we present The SynthSynthesizer, a tool that enables re-
searchers to try out different interfaces and logic fragments for reactive synthesis.
Researchers can define interfaces by simply implementing a single JavaScript

function, after which a non-technical audience can interact with the tool. In

2 W. Choi et al.

AM	On

LFO	Off

AM	Off

LFO	On AM	On

LFO	OffLFO	On

LFO	Off

AM	Off

AM	OnLFO	On

Cmaj

E-

Gmaj

B

DA-

F♯-

Fig. 1: Autumn Leaves Lead Sheet indicating the changes in signal topology

order to appeal to a larger base of users, The SynthSynthesizer uses computer
music as an reactive environment that is also interactive and creative.

The SynthSynthesizer runs on a browser, making it easily to deploy user
studies. The tool is also easy to install and modify for researchers; the synthesis
toolchain is provided in docker container so that even researchers without a deep
knowledge of reactive synthesis can explore the specification interface space.

Using our tool, we explored dropdowns as a way of specifying reactive control
by implementing three different interfaces. We ran a user study on these inter-
faces by presenting them to 21 participants with a mix of music and program-
ming backgrounds. From the study, we found that users experienced a tradeoff
between ease of use and expressivity, and enjoyed the no-code nature of syn-
thesis. These experiences motivate further exploration of specification interface
design, which our tool aims to facilitate.

In summary, our contributions are as follows:

1. We present The SynthSynthesizer, a music-based tool that enables rapid pro-
totyping and user studies for studying different reactive synthesis interfaces.

2. We explored dropdowns as an interface for specifying reactive control, and
implemented the example interfaces using our tool.

3. We ran a user study with 21 users, and found a tradeoff between expressivity
and ease-of-use as well as a possible appeal of synthesis to a wider user-base.

2 Motivating Example

As an illustrative example, consider a user that would like a reactive system to
manipulate audio signals as phrases of a music piece are played. Specifically, AM
synthesis should be toggled whenever the note G4 is played, and LFO vibrato
should be toggled whenever the note E4 is played, as shown in Figure 1.

To build such a reactive system, a user could write a program that spec-
ifies when and how the signals should change. However, writing this program
is generally not an easy task. It not only requires the user to be a competent

Program Synthesis for Musicians 3

programmer, but also requires them to be comfortable using specific API’s such
as Web Audio. Moreover, even if a user can write such a program, the solution
is verbose, requiring nearly 100 lines of code to satisfy two logical conditions.

In order to concisely encapsulate the time-varying nature of the signal topol-
ogy, the user might turn to reactive synthesis. In this case, the user would need
to choose a temporal logic and write a specification that determines when AM
synthesis and LFO vibrato are toggled. Such a specification, using Temporal
Stream Logic (TSL) [11], can be written as follow:

(play G4↔ [AM � toggle AM]) ∧
(play E4↔ [LFO � toggle LFO])

Though reactive synthesis brings the user closer to building their instrument,
this solution generally involves too much prerequisite knowledge. Users must
understand the notion of formal guarantees, time steps, and other particularities
of temporal logic, making the approach unrealistic for a broad population.

To overcome the above challenges, we need a framework where non-technical
users can easily specify temporal properties. Here, we present The SynthSynthe-
sizer as a tool for exploring the space of such frameworks, where researchers can
prototype different interfaces and run user studies.

3 Preliminaries

Temporal Stream Logic (TSL) is a logic designed around the synthesis of reac-
tive programs [11]. TSL is built upon the same temporal logic operators (i.e.
next , until U) found in logics such as Linear Temporal Logic. In addition,
TSL introduces predicate terms τP , function terms τF , and update terms to de-
scribe reactive systems that manipulate data. In TSL, the conceptualization of
a reactive system revolves around signals s which carry data values of arbitrary
complexity; A TSL specification describes how functions should be applied to
these signals over time. Signals may be pure outputs, or cells, as a one-timestep
delayed input. These terms are defined as shown in the grammar of TSL below:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

τF := s | f(τ0F , τ
1
F , . . . , τ

n−1
F)

τP := p(τ0F , τ
1
F , . . . , τ

n−1
F)

τU := [s� τF]

4 The SynthSynthesizer

In this section, we introduce The SynthSynthesizer, a testbed tool for running
user studies on different logical fragments and interfaces for program synthesis.

4 W. Choi et al.

User

Specification
Interface

MIDI, Mouse,
or Keyboard

Audio
Synthesizer

JavaScript CFM
AIGER
Circuit

TLSF
Format

TSL
Specification

Interface
Parser

Define Specification

Interact Control

User Selection

TSL
Specification

Synthesized Code

TSL Synthesis Backend

Researcher Implemented

Audio Components

Synthesis Backend

Fig. 2: Overview of The SynthSynthesizer

The framework allows researchers to create interfaces by defining them through
HTML and implementing a single function in JavaScript to parse the interface.
The tool also allows researchers to experiment with different fragments of logics,
and explore the tradeoffs between expressivity and usability.

The overview of the process is shown in Figure 2. First, a user submits their
specification through an interface. This gets parsed into a logic formula, which
is then synthesized into JavaScript code. The resulting code is embedded back
into the tool, controlling the audio synthesizer that the user plays with either
their mouse, QWERTY keyboard, or USB MIDI controller. The researcher is
free to use any temporal logic that can synthesize to JavaScript (such as LTL),
but we include our TSL synthesis backend for completeness and usability.

We implemented the audio components of The SynthSynthesizer using Web
Audio [28] and Web MIDI [36], both standard Web APIs maintained by the
W3C. The frontend uses framework-less JavaScript, and the backend runs on
Node.js. The server backend is responsible for synthesizing TSL specifications
to JavaScript, with Strix [26] as its synthesis backend and tsltools [10] to
convert between formats such as TLSF [20]and AIGER [18].

We designed The SynthSynthesizer so that researchers can easily access the
tool. Most notably, installation is hassle-free: we provide a docker container with
all the dependencies pre-installed. In particular, this makes the tool accessible
to researchers outside the formal methods community; researchers do not a deep
understanding of the synthesis procedure to use our tool. Additionally, since the
tool runs on a web browser, running user studies is as simple as just sharing a
link. A live demo of the tool is available at https://tslsynthesissynthesizer.com.

5 Evaluation

As an example of how The SynthSynthesizer can be used to explore interfaces
for synthesis, we implemented three separate interfaces and presented them to
users for a user study. Each interface utilizes a different fragment of TSL.

https://tslsynthesissynthesizer.com

Program Synthesis for Musicians 5

Fig. 3: Interface of TSLα

5.1 Interface Implementations

We explored dropdowns as an interface for specifying reactive control, as drop-
downs are a ubiquitous design element. We created two dropdown interfaces
with different frontends, and included a third written interface as a control case.
All three interfaces use TSL to synthesize user specifications, but with varying
parts of the grammar and subsequently varying levels of expressivity.

We now present each implementation separately.

TSLα. In our first implementation, we use a fragment of TSL that we call
TSLα. Let τU ∈ TU update terms, τp ∈ TP predicate terms. Then, every formula
ϕ in TSLα is built according to the following grammar:

ϕ := τu | τp ↔ τu | ϕ ∧ ϕ

The syntax of TSLα allows users to specify predicates that reconfigure the
signal flow topology of the underlying synthesizer. In particular, the TSL speci-
fication in the motivating example can be captured by TSLα.

The grammar is concise, allowing us to build a compact interface as in Figure
3. With this interface, users can define specifications by selecting from a set of
predefined options. TSLα specifications also synthesize quickly; 1,000 random
synthesis queries took, on average, only 1.76 seconds (cf. Appendix A.2).

TSLβ . Our second implementation still features a dropdown interface, but
with a more expressive grammar. Its syntax is constructed as follows:

ψ = τu | τp ↔ τu | τu → τu

ϕ = ψ | τu → ψ W ¬τu | ϕ ∧ ϕ

6 W. Choi et al.

Fig. 4: Partial Interface of TSLβ

Expanding upon TSLα, TSLβ adds terms of τu → τu and the weak until operator
W for more complex specifications. For instance, a specification

[waveform � sine()]↔ (play C4↔ [amFreq← double amFreq])

W ¬[waveform � sine()] ∧ ¬[waveform � waveform]

states that playing C4 doubles AM frequency only when the waveform is sine.
To suit the additional complexity in TSLβ , we arranged the dropdowns as

natural language sentences for user readability. The interface is shown in Figure
4. This fragment of TSL also synthesizes quickly, with a mean of 10.09 seconds
for 1,000 random specification synthesis queries (cf. Appendix A.2).

TSLµ. TSLµ subsumes TSLα and TSLβ by offering the full syntax of TSL,
but with the restriction that predicates cannot be applied to cells (cf. Ap-
pendix A.1). We can easily implement the tool using a written interface. Here,
users type TSLµ formulas directly into a textbox, accessing the syntax TSLµ
without any restrictions. In a user study, this interface would serve as the con-
trol case. Since the UI is a simple textbox, we omit a figure of TSLµ.

5.2 User Study

We presented the TSLα, TSLβ , and TSLµ instantiations of The SynthSynthe-
sizer to 21 users for a usability study. The participants were recruited through
online forums focused on programming and computer music, such as reddit or
discord. Users first watched a video tutorial3and answered preliminary ques-
tions on a scale of 1 (not at all experienced) - 7 (very experienced), to rate
their own experience in music (mean = 4.0, SD = 2.2), audio signal processing
(mean = 2.6, SD = 2.1), and programming (mean = 4.5, SD = 2.0). The users
then manipulated the tool to define specifications, synthesize them, and interact
with the resulting reactive system. Afterwards, users responded to a variety of
questions, such as rating each interface on its ‘Ease of Use’ and ‘Flexibility’,
or answering if they had a favorite interface and why. The full list of questions
is included in Appendix A.3. Note that we did not time users for any of their
activities, since our user study was focused on creativity and music production
instead of concrete task completion.

From the user study, we found that participants found TSLα and TSLβ
equally understandable (Q2) and intuitive (Q3), while also being expressive and

3 https://tslsynthesissynthesizer.com/tutorial.html

Program Synthesis for Musicians 7

flexible (Q4). However, while users rated TSLµ to be expressive and flexible,
participants rated its usability to be lower than TSLα and TSLµ across all ques-
tions. Since we organized our study by showing TSLα, TSLβ , and TSLµ in the
same sequential order, we intentionally created a bias for users to have a more
solid understanding of TSL and temporal logic by the time they reached the
TSLµ interface. However, as users still expressed difficulty in using TSLµ, this
strengthens our claim that we need a more user-friendly interface than text-based
interfaces to expose reactive synthesis to a wider audience. From this, we do not
conclude that dropdowns are necessarily the right choice of interface - instead
we remark that this is complex design space that requires further investigation.

A total of 18 participants responded to an optional qualitative question ask-
ing which interface was their favorite. Three chose TSLα, nine chose TSLβ , and
six chose TSLµ. The preference for the more complex interfaces shows how users
are intrigued by the expressivity and possibilities of TSL. Although larger frag-
ments of TSL make interfaces harder to use, users are willing to accept a more
complex logic if the interface for the specifications is sufficiently constrained. The
balance struck by TSLβ was also reflected in the user explanations. One user re-
sponded “TSLβ: offers the most flexibility while still being incredibly intuitive.”
and another user responded “TSLβ had the best tradeoff in intuitiveness/ease of
use and freedom/flexibility”. Two other users mentioned they preferred to avoid
writing code, responding “TSLβ! It felt like it had a lot more layers that you
could add on, without the complexity of writing your own code to make it work.”
and “TSLβ. It has lots of flexibility and no need to write code.”.

A video of users interacting with the tool is available at tslsynthesissynthe-
sizer.com/demo.html. Visualizations of the user study results are available in
Appendix A.4.

6 Related Work

The SynthSynthesizer is a tool for exploring logic and interface design for pro-
gram synthesis with temporal logics. In recent years, there has been an increased
interest in usability design of language tools [5], including program synthesis
tools [7, 32]. Frameworks to bring program synthesis to broader audiences have
also been explored in the context of games [25], graphics [16], and data sci-
ence [35], but synthesis tools for non-technical users have not yet included re-
active synthesis specifically. The tool Flax [34,35] specifically looks at nontradi-
tional interfaces to synthesis by using visualization as a mode of specification.

Some existing tools have explored the usability design space of temporal log-
ics for more technical users. TERMITE [29, 30] was designed to bring reactive
synthesis to software developers. Another critical design problem in the usability
of reactive synthesis is the task of providing explanations for reactive synthe-
sis results [1]. Additionally, the UPPAAL tool provides an application-specific
engineered interface for TCTL (timed computation tree logic) specifications;
however, UPPAAL is more focused on verification than synthesis [2].

https://tslsynthesissynthesizer.com/demo.html
https://tslsynthesissynthesizer.com/demo.html

8 W. Choi et al.

While interfaces for interactive music generation with reactive synthesis is a
new research problem, computer-assisted composition has a long history [6]. In
terms of usability, recent results have found that users preferred to have more
control over automated music generation rather than having a monolithic end-
to-end model [17]. Similarly, user studies on a music generation tool for video
editing [12] found participants objecting to too much automation, as it made
them feel as if they had not created music. These insights can directly contribute
to interface research of reactive synthesis, since synthesized automata may be
counter-intuitive to users.

We have built our tool around TSL [11], but our interface could be used
to explore specification interface for other temporal logic. Of particular interest
would be adding support for TSL-Modulo Theories [9, 24], which would allow
for more fine-grained manipulations of music parameters.

7 Conclusions

We have introduced The SynthSynthesizer, a music-based user study tool that
allows rapid prototyping of different fragments of logic and interfaces. We hope
our tool can be used to start research into designing interfaces for different logics,
and make synthesis more accessible to a broader audience.

References

1. Baumeister, T., Finkbeiner, B., Torfah, H.: Explainable reactive synthesis. In: Au-
tomated Technology for Verification and Analysis (2020)

2. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0 (2006)

3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive
(1) designs. Journal of Computer and System Sciences (2012)

4. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Journal of Symbolic Logic (1963)

5. Coblenz, M., Davis, A., Hofmann, M., Huang, V., Jin, S., Krieger, M., Liang, K.,
Wei, B., Yong, M.S., Aldrich, J.: User-centered programming language design: A
course-based case study (2020)

6. Cope, D.: An expert system for computer-assisted composition. Computer Music
Journal 11(4), 30–46 (1987)

7. Crichton, W.: Human-centric program synthesis. CoRR abs/1909.12281 (2019)
8. Ferdowsifard, K., Ordookhanians, A., Peleg, H., Lerner, S., Polikarpova, N.: Small-

step live programming by example. In: Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology. pp. 614–626 (2020)

9. Finkbeiner, B., Heim, P., Passing, N.: Temporal stream logic modulo theories.
CoRR abs/2104.14988 (2021)

10. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Synthesizing functional re-
active programs. In: International Symposium on Haskell (2019)

11. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal stream logic: Syn-
thesis beyond the bools. In: Computer Aided Verification (2019)

Program Synthesis for Musicians 9

12. Frid, E., Gomes, C., Jin, Z.: Music creation by example. In: CHI ’20. ACM (2020).
https://doi.org/10.1145/3313831.3376514

13. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. ACM Sigplan Notices (2011)

14. Gulwani, S., Mayer, M., Niksic, F., Piskac, R.: Strisynth: synthesis for live pro-
gramming. In: International Conference on Software Engineering (2015)

15. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Foundations and
Trends® in Programming Languages (2017)

16. Hempel, B., Lubin, J., Chugh, R.: Sketch-n-sketch: Output-directed programming
for svg. In: User Interface Software and Technology (2019)

17. Huang, C.A., Koops, H.V., Newton-Rex, E., Dinculescu, M., Cai, C.J.: AI song
contest: Human-ai co-creation in songwriting. CoRR abs/2010.05388 (2020)

18. Jacobs, S.: Extended aiger format for synthesis. arXiv:1405.5793 (2014)
19. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,

Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez, G.A., Raskin, J.,
Sankur, O., Tentrup, L.: The 4th reactive synthesis competition (SYNTCOMP
2017): Benchmarks, participants & results. In: SYNT@CAV (2017)

20. Jacobs, S., Klein, F., Schirmer, S.: A high-level ltl synthesis format: Tlsf v1. 1.
Synthesis Workshop at CAV (2016)

21. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual spec-
ification of data transformation scripts. In: CHI (2011)

22. Lerner, S.: Projection boxes: On-the-fly reconfigurable visualization for live pro-
gramming. In: CHI (2020)

23. Lubin, J., Collins, N., Omar, C., Chugh, R.: Program sketching with live bidirec-
tional evaluation. ICFP (2020)

24. Maderbacher, B., Bloem, R.: Reactive synthesis modulo theories using abstraction
refinement. arXiv preprint arXiv:2108.00090 (2021)

25. Mayer, M., Kuncak, V.: Game programming by demonstration. In: New Ideas,
New Paradigms, and Reflections on Programming Software

26. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification (2018)

27. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
International Colloquium on Automata, Languages, and Programming (1989)

28. Rogers, C.: Web audio api specification. World Wide Web Consortium (2021)
29. Ryzhyk, L., Walker, A.: Developing a practical reactive synthesis tool: experience

and lessons learned. Workshop on Synthesis at CAV (2016)
30. Ryzhyk, L., Walker, A., Keys, J., Legg, A., Raghunath, A., Stumm, M., Vij, M.:

User-guided device driver synthesis. In: OSDI (2014)
31. Santolucito, M.: Human-in-the-loop program synthesis for live coding. In: Proceed-

ings of the 9th ACM SIGPLAN International Workshop on Functional Art, Music,
Modelling, and Design (2021)

32. Santolucito, M., Goldman, D., Weseley, A., Piskac, R.: Programming by example:
Efficient, but not” helpful”. In: PLATEAU@SPLASH (2018)

33. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: International Symposium on
Automated Technology for Verification and Analysis (2007)

34. Wang, C., Feng, Y., Bodik, R., Cheung, A., Dillig, I.: Visualization by example
(POPL) (2019)

35. Wang, C., Feng, Y., Bodik, R., Dillig, I., Cheung, A., Ko, A.J.: Falx: Synthesis-
powered visualization authoring. In: CHI Conference on Human Factors in Com-
puting Systems (2021)

36. Wilson, C., Kalliokoski, J.: Web midi api. W3C, Working Draft (2021)

https://doi.org/10.1145/3313831.3376514

10 W. Choi et al.

A Appendix

A.1 TSLµ and its Decidability

For our tool, we use the TSL fragment TSLµ that has no predicate term ap-
plication on cell values. While our tool has many internal cell values – such as
modulation frequencies or waveforms – predicate terms are only applied to fresh
user inputs (i.e. which notes they pressed, the velocity of key press, etc.). This
allows us to use the fragment TSLµ, which is decidable, unlike the full syntax of
TSL.

Here, we formalize the definition of TSLµ and prove the decidability of its
synthesis problem.

Definition 1 (TSLµ). Let function terms τF and update terms τU be defined
as in Section 3. Let predicate terms τP be defined as follows:

τP := p(si0 , si1 , · · · sij)

where sij refers to input signals, and p any predicate. Then, a TSLµ formula is
defined by the following syntax:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ψ

Intuitively, this is a fragment of TSL where predicate terms are evaluated only
on input signals, and not cells. In particular, synthesizing this fragment of TSL
is decidable.

We now show that synthesis of this fragment of TSL is decidable by showing
that every TSLµ formula can be reduced to an LTL formula.

Theorem 1 (TSLµ-LTL equivalence). Every TSLµ formula can be trans-
formed to an equivalent LTL formula in polynomial time.

Proof. In TSL synthesis, the environment player chooses the predicate terms τP
and the system player chooses the update terms τU . In TSLµ, the environment
inputs τP ’s are always fresh at each timestep, and their values do not depend on
previous outputs τU of the system player.

Now, we can use the translation procedure from TSL to LTL presented in [11]:

ϕLTL =
(∧

so∈O∪C

∨
τ∈T so

U/id

(
τ ∧

∧
τ ′∈T so

U/id
\{τ}

¬ τ ′
))

∧ SyntacticConversion
(
ϕTSL

)
Finkbeiner et. al show the soundness of this procedure, that the realizability of
ϕLTL implies the realizability of ϕTSL. In the full syntax of TSL, this procedure
may still produce ϕLTL that returns unrealizable even though ϕTSL is realizable
since the procedure removes the semantic meanings of update terms. However,
in TSLµ, the environment inputs do not depend on the previous system outputs,

Program Synthesis for Musicians 11

Interface type Realizable Unrealizable Timeout Median (s) Average (s)

TSLα 446 554 0 1.72 1.76

TSLβ 911 1 71 51.50 10.09

Table 1: Synthesis times for different grammars

and no semantic interpretation of update terms is necessary; it follows that an
unrealizable ϕLTL always implies an unrealizable ϕTSL formula.

Furthermore, this procedure is bounded in polynomial time with respect to
the formula size. The first part of the equation partially reconstructs the semantic
meaning of updates by ensuring that a signal is not update with multiple values
at a time. This is bounded in the size of update terms,

(
n
2

)
∈ O(n2). The second

part of the equation simply transforms predicate terms to environment inputs
and update terms to system outputs, and is in done in linear time, so the entire
procedure is bounded in polynomial time.

Finally, we state the decidability as a corollary.

Corollary 1 (Decidability of TSLµ synthesis). The synthesis problem of
TSLµ is decidable.

Proof. The syntheis problem of LTL is 2EXP-COMPLETE [27]. Therefore, it follows
from Theorem 1 that the synthesis problem of TSLµ is also 2EXP-COMPLETE,
and decidable.

A.2 Experimental results

In order for users to interact with an interface, it is necessary that it synthe-
sizes in a reasonable amount of time. Therefore, we decided to measure syn-
thesis times of our TSL fragments by randomly generating 1,000 specifications
using The SynthSynthesizer’s random specification generator. The runtimes of
random specifications is particularly relevant to our tool, as the interfaces for
TSLα and TSLβ included a “generate random specification” button, allowing
users to explore the specification design space without needing to have a goal
in mind. The random specification generator chooses an option randomly from
each dropdown menu in the UI, effectively doing a random search through the
combinatorial space of all possible specifications in TSLα and TSLβ . We did not
run a experimental result on the TSLµ syntax as we did not include random
generation of specifications for TSLµ.

Synthesis was executed on a quad-core Intel Xeon processor (2.30 Ghz, 16Gb
RAM) running Ubuntu 64bit LTS 18.04. Timeout was defined as any synthesis
request that took over 10 seconds. Average and median time exclude these timed
out synthesis requests. The results are shown in Table 1.

Overall, we found that TSLα specifications synthesized much faster than
TSLβ specifications, without any timeouts. This was an expected result, given
the relative simplicity of TSLα’s grammar compared to that of TSLβ . However,

12 W. Choi et al.

(a) Synthesis time distribution of TSLα (b) Synthesis time distribution of TSLβ

Fig. 5: Synthesis times of 1000 random specifications

we were surprised to find that only one TSLβ specification was unrealizable.
After a careful investigation, we discovered that the additional complexity in
the grammar more tightly constrained each specification. Since each specification
made weaker requirements, the grammar had less probability to create mutually
exclusive specifications.

We visualize the distribution of the synthesis times in Figure 5. TSLα synthe-
sis times follow a quasi-Gaussian distribution, but even the longest-taking query
completes in under 2.4 seconds. On the other hand, the distribution of TSLβ
specifications skew right; the number of specifications decreases with increas-
ing synthesis time. The majority of specifications synthesize quickly, with 68.5%
specifications taking less than 10 seconds to synthesize. From our experimental
results, we see a clear tradeoff between expressivity and synthesis times. TSLα
has a limited grammar, but on average synthesis takes less than two seconds to
complete. On the other hand, TSLβ uses a larger fragment of TSL and provides
more expressivity to the user, but at the cost of timeout; 7.1% of specifications
timed out, and on average took almost 10 times as longer to synthesize than
TSLα.

A.3 User Study Questions

In this section, we present the full set of questions for the comprehensive user
study in Tables 2, 3, 4. Note that Q5 is repeated in the table because the question
is phrased slightly different for TSLµ. The question is meant to ask about the
intuitiveness of the structure of the specification interface. For TSLα and TSLβ ,
the specification interface is structured around dropdown menus. For TSLµ, the
specification interface is structured around a text box.

A.4 User Study Results Visualizations

In this section, we present visualizations of the user study results. Figure 6a
shows the user responses for each question for each separate interface. Figures

Program Synthesis for Musicians 13

Question Number Question

Q1 Intuitiveness

Q2 Understandability

Q3 Ease of Use

Q4 Flexibility and Expressivity

Table 2: Please rate the TSL [x] interface for creating and synthesizing specifi-
cations from 1 to 7 (7 is highest) on the following

Question Number Question

Q5(α, β) The dropdown menus in TSL [x] are an intuitive interface
for specifying control flow

Q5(µ) The text box in TSLµ is an intuitive interface
for specifying control flow

Q6 TSL [x] can help me create music that
I previously wanted to create

Q7 TSL [x] can give me new ideas for music
that I hadn’t thought of

Q8 I can teach others how to use TSL [x]

Q9 I would use TSL [x] again to make music

Q10 I understand what specifications in TSL [x] mean

Q11 After clicking ”Synthesize!”, the program did
what I expected it to

QD.α I understood sequential structure of the dropdown menus

QD.β I understood the natural language descriptions
between the dropdown menus

QS.µ I understood the syntax of TSL [x]

Table 3: On a scale from 1 to 7, how much do you agree with the following
statements about TSL [x]

Question Number Question

QG.1 What are your general thoughts on TSL [x]?

QG.2 Which of the three specification interfaces
was your favorite? Why?

QG.3 Would you like to share anything else?

Table 4: Paragraph Responses

14 W. Choi et al.

6b and 6c demonstrate the tradeoff between flexibility and ease-of-use of TSLα,
TSLβ , and TSLµ.

(a) User Study Average Ratings with error bars

(b) TSL Interfaces Average Rating for
Ease of Use with error bars

(c) TSL Interfaces Average Rating for
Flexibility with error bars

Fig. 6: User Study Average Ratings

	Program Synthesis for Musicians: A Usability Testbed for Temporal Logic Specifications

