
Solving Quartic Equations

The Abel-Ruffini theorem states that no general solutions exist for poly-
nomials of degree five or higher.

This requires a substantial (but beautiful) amount of algebra to prove.
Fortunately, however, it is much easier to prove that general solutions exist
for the polynomials of degree four or lower, which I outline here!

Theorem 1 (Solvability of the Quartics). For any equation x4 + bx3 + cx2 +
dx + e ∈ C[x], we can definitively find their roots.

This means to say, that for any quartic equation, that we can find its
roots like we can for the quadratic x2 + ax + b with the so-called ”quadratic
formula” −b±

√
b2−4ac

2a . Here, we prove that we can find such a formula for
quartic as well.

We first need to prove that a formula for the cubic also exists.

Theorem 2 (Solvability of the Cubics). For any equation x3 + ax2 + bx + c =
0 ∈ C[x], we can definitively find their roots.

Proof. For any x3 + ax2 + bx + c = 0, substitute x with y = x− b
3 and obtain

y3 + py + q = 0

where p = a2

3 −
2a
3 + b and q = −a3

27 + a2

9 −
ab
3 + c.

Now, we make another substitution, y = z− p
3z to obtain that

z3 − p3

27z3 + q = 0

and equivalently

(z3)2 + qz3 − p3

27z3 = 0.

Using the quadratic formula, we can find the roots of z3 as

−q±
√

q2 + 4p3

27

2
(1)
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Let these roots be A and B. These A and B are conjugate imaginary
terms, and their product yields −p3

27 and we find that 3
√

AB = −p
3 .

Certainly, for these A, B = z3, we know that 3
√

A and 3
√

B are roots of z.
But what else are the roots of z? We know that Euler’s equation gives us
eix =cos(x) + isin(x), and plugging into 2kπ for x for some k ∈ Q, we have
the infamous polar coordinate of 1 as

e2kπi = 1.

We can express this equation as

(e
2
3 kπi)3 = 1,

and solving for these values will give use the numbers that cube to 1 (the
so-called 3rd roots of unity).

Plugging in 0 gives us e0 = 1. Plugging in 1 into k, we get that

e
2
3 πi = cos

2π

3
+ i sin

2π

3
=
−1 + i

√
3

2

Let this be ω. Computationally, we can check that indeed ω3 = 1. Sim-
ilarly, plugging in 2 into k, we get that ω2 = −1−i

√
3

2 is also a cube root of
1.

Therefore, since we have A and B as solutions for z3, we can expand
our possible for solutions for z to the following:

3
√

A, 3
√

B, ω
3
√

A, ω
3
√

B, ω2 3
√

A, ω2 3
√

B.

Now, we plug these solutions to z back into y = z− p
3z . Let us first try

z = 3
√

A. Using the fact that we found that 3
√

AB = −p
3 , we can get that

y =
3
√

A− p
3 3
√

A
=

3
√

A− p 3
√

B
3 3
√

A 3
√

B
=

3
√

A− p 3
√

B
3−p

3

=
3
√

A +
3
√

B.

Plugging in z = 3
√

B gives us the same solution. What about then z =
ω 3
√

A?

y = ω
3
√

A− p
3ω 3
√

A
= ω

3
√

A− pω2 3
√

B
ω 3
√

Aω2 3
√

B
= ω

3
√

A + ω2 3
√

B.

Plugging in z = ω2 3
√

B gives the solution, and similarly, plugging in
z = ω2 3

√
A gives us our final answer that
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y = ω2 3
√

A + ω
3
√

B.

Putting these all together with Equation (1), we get that

y = ωi 3

√
− q

2
+

√
p3

27
+

q2

4
= ω2 3

√
− q

2
−

√
p3

27
+

q2

4

for i = 0, 1, 2. Since p = a2

3 −
2a
3 + b and q = −a3

27 + a2

9 −
ab
3 + c, and all

values of a, b, c are given, we see that we can definitively find the roots of
the cubic.

Now we can tackle the solvability of the quartic.

Theorem 1 (Solvability of the Quartics). For any equation x4 + bx3 + cx2 +
dx + e ∈ C[x], we can definitively find their roots.

Proof. For a given x4 + bx3 + cx2 + dx + e = 0, let us substitute x with the
variable y = x + a

4 . Then we can rewrite our equation as

(y− a
4
)4 + a(y− a

4
)3 + b(y− a

4
)2 + c(y− a

4
) + d = 0

y4 + (−3a
8

+ b)y2 + (
a
8
− ab

2
+ c)y + (

3a4

256
+

a2

16
− ac

4
+ d) = 0

Let p = − 3a
8 + b and q = a

8 −
ab
2 + c and r = 3a4

256 +
a2

16 −
ac
4 + d, and put

our equation in the form of

y4 + py2 + qy + r = 0

and equivalently

y4 = −(py2 + qy + r).

Now, we add y2z + 1
4 z2 to both sides to obtain

y4 + y2z +
1
4

z2 = −py2 + y2z− qy− r +
1
4

z2

and therefore

(y2 +
1
2

z)2 = (z− p)y2 − qy + (
1
4

z2 − r).
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This implies that the right hand side is a square of some term. However,
the right hand side has degree two, so it must a square of a linear term, and
therefore

(z− p)y2 − qy + (
1
4

z2 − r) = (my + k)2 (2)

for some m and k. This implies that this quadratic equation has only
one root, and that only occurs when its determinant is zero. In this case,

the determinant is
√

q2 − 4(z− p)( 1
4 z2 − r), so we have that

q2 − 4(z− p)(
1
4

z2 − r) = 0

and
z3 − pz2 − 4rz + (4pr− q2) = 0.

Here, by Theorem 2, we know that we can find values of z. Plugging
the values of z back into Equation (2), we can find values for m and k. Then
we can plug these values of z, m and k for

(y2 +
1
2

z)2 = (my + k)2

or rather,

y2 +
1
2

z = my + k

Which we know how to solve.
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