Solving Quartic Equations

The Abel-Ruffini theorem states that no general solutions exist for poly-
nomials of degree five or higher.

This requires a substantial (but beautiful) amount of algebra to prove.
Fortunately, however, it is much easier to prove that general solutions exist
for the polynomials of degree four or lower, which I outline here!

Theorem 1 (Solvability of the Quartics). For any equation x* + bx® + cx* +
dx + e € C[x], we can definitively find their roots.

This means to say, that for any quartic equation, that we can find its
roots like we can for the quadratic x* + ax + b with the so-called ”quadratic

, —bh4tH2— .
formula’ W. Here, we prove that we can find such a formula for

quartic as well.
We first need to prove that a formula for the cubic also exists.

Theorem 2 (Solvability of the Cubics). For any equation x> + ax> + bx +c =
0 € Clx], we can definitively find their roots.

Proof. For any x® 4+ ax? + bx + ¢ = 0, substitute x with y = x — % and obtain

V+py+q=0
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wherep =% — ¥ +band g = 5% %—%—i—c.

Now, we make another substitution, y = z — % to obtain that

2 — p—s +g9=0
2723
and equivalently
3\2 5 P
(z°)° + gz ~ 5773 =0.

Using the quadratic formula, we can find the roots of z° as
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Let these roots be A and B. These A and B are conjugate imaginary
terms, and their product yields _2—@3 and we find that v/AB = -

Certainly, for these A, B = 23, we know that v/A and V/B are roots of z.
But what else are the roots of z? We know that Euler’s equation gives us
e’ =cos(x) + isin(x), and plugging into 2k7 for x for some k € Q, we have
the infamous polar coordinate of 1 as

eZkT[i —1.
We can express this equation as
2 .
( egkm )3 =1,

and solving for these values will give use the numbers that cube to 1 (the
so-called 3rd roots of unity).
Plugging in 0 gives us ¢’ = 1. Plugging in 1 into k, we get that

2 . 2m _ —1+iV/3
7Tl
es = Cos = +isin R —
Let this be w. Computationally, we can check that indeed w?® = 1. Sim-

ilarly, plugging in 2 into k, we get that w? = _1%\@ is also a cube root of
1.

Therefore, since we have A and B as solutions for z°, we can expand
our possible for solutions for z to the following;:

\3/2, \S/E,a) v A,w\S/E,w2 Y A,w2\3/§
Now, we plug these solutions to z back into y = z — +. Let us first try
z = v/ A. Using the fact that we found that v/AB = %p, we can get that

3 P\/> P\/>3
y\fmﬂﬁf\ﬁafjtf

Plugging in z = v/B gives us the same solution. What about then z =

WV A?

23
YA P A pw*VB 23
y=wva 3w\3/2_w 4 w3Aw2\3/§_w\/Z+w\/§'

Plugging in z = w?v/B gives the solution, and similarly, plugging in
z = w?vV/A gives us our final answer that
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Yy = w?V/A + wV/B.

Putting these all together with Equation (1), we get that

AT

fori =0,1,2. Since p = %— +bandg= 2% + % — %2 + ¢, and all
values of a,b, ¢ are given, we see that we can def1n1t1vely fmd the roots of
the cubic.
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Now we can tackle the solvability of the quartic.

Theorem 1 (Solvability of the Quartics). For any equation x* + bx® + cx? +
dx + e € C[x], we can definitively find their roots.

Proof. For a given x* + bx® + cx? + dx + e = 0, let us substitute x with the
variable y = x + 7. Then we can rewrite our equation as

(y — >+a(3/ 4) +b(y — 4) +c(y—f)+d_o

3a a ab 3a*  a*  ac

4D+ (5 - = —+———+d) =

g T gyt T Egtig g TV=0
Letp:—%+bandq:%—%—kcandr:ﬁ—k%—%—kd,andput

our equation in the form of

v (=

vy py +ay+r=0
and equivalently

vt =—(py* +qy+r).

Now, we add y?z + 122 to both sides to obtain

y4+y22+%z2 = —py2+yzz—qy—r+izz

and therefore

(P + 527 = (= Pl —ay + (G2~ )



This implies that the right hand side is a square of some term. However,
the right hand side has degree two, so it must a square of a linear term, and
therefore

1
(z=p)y* —aqy + (52" —7) = (my +k)* )
for some m and k. This implies that this quadratic equation has only
one root, and that only occurs when its determinant is zero. In this case,

the determinant is \/ q* — 4(z — p)(322 — r), so we have that

P-4 p) -0 =0

and
2% — pz* —drz + (4pr — ¢*) = 0.

Here, by Theorem 2, we know that we can find values of z. Plugging
the values of z back into Equation (2), we can find values for m and k. Then
we can plug these values of z, m and k for

2 1 o 2
(v + EZ) = (my +k)
or rather,
y:+ %z =my+k

Which we know how to solve.



