Boolean Algebras are Posets

November 1, 2021

Definition 1. A Boolean Algebra is a partially ordered set (poset) B equipped with distinguished elements 0, 1, binary operations $a \lor b$ of "join", and $a \land b$ of "meet", and a unary operation $\neg b$ of "complementation". For any arbitrary $a, b, c \in B$, the operations are required satisfy the following conditions:

$$0 \le a$$

$$a \le 1$$

$$a \le c \text{ and } b \le c \text{ iff } a \lor b \le c$$

$$c \le a \text{ and } c \le b \text{ iff } c \le a \land b$$

$$a \le \neg b \text{ iff } a \land b = 0$$

$$\neg \neg a = a$$

Example 1 (Powersets as Boolean Algebras). Let P(X) be the powerset of all subsets $A \subseteq X$ of a set X. Then, taking the inclusion operator $A \subseteq B$ as the ordering operator, the empty set \emptyset as 0, the whole set X as 1, union and intersection of subsets as join and meet, and the relative complement X - A as $\neg A$, P(X) is a Boolean Algebra.

Example 2 (Standard Boolean Algebra). Given \top (true) as $1, \perp$ (false) as 0, and the familiar boolean disjunction, conjunction, negation as join, meet, and complementation, the set $\{\top, \bot\}$ is a Boolean Algebra.